EMC PCB Design and Integration Training

EMC PCB Design and Integration Training

Introduction:

EMC PCB Design and Integration Training Course Description

If you are a design or compliance engineer, it pays for you to know how and why EMI testing is conducted, as well as the typical causes of failure. This 3-day EMC PCB Design and Integration Training offers all of the EMI information you’ll need to design compliant Printed Circuit Boards (PCBs)—including design considerations at CAE and CAD levels—for you to provide a compliant radiation/susceptibility product. You’ll examine ways to prevent common EMI/EMC problems regarding power supplies, cables, connectors, slots, discontinuity of ground planes and more. This three-day class will focus on EMI and RFI issues regarding PCBs, computers, analog designs and systems, along with relevant EMI regulations in the U.S., the European Union and Asia. Highlights include PCB radiation basics, radiation and bypass on PCBs, PCB radiation suppression techniques, grounding designs/filtering, crosstalk/termination, power and ground planes, antenna loops, spread spectrum clocking, and differential-mode and common-mode radiation. Enclosure and supplemental control techniques are presented as a part of design where the PCB control measures are restricted.

EMC PCB Design and Integration TrainingRelated Courses:

Duration:3 days

Skills Gained:

This course will provide you with the knowledge to design a compliant EMC system right the first time. It provides a set of rules for both PCBs and enclosures to identify and correct EMI design deficiencies. It provides you with tips & techniques to successfully conduct compliance testing at the FCC, MIL-STD or EU testing facilities.

Customize It:

With onsite Training, courses can be scheduled on a date that is convenient for you, and because they can be scheduled at your location, you don’t incur travel costs and students won’t be away from home. Onsite classes can also be tailored to meet your needs. You might shorten a 5-day class into a 3-day class, or combine portions of several related courses into a single course, or have the instructor vary the emphasis of topics depending on your staff’s and site’s requirements.

Course Content:

FUNDAMENTALS

Frequency, time, and distance; lumped versus distributed systems, four kinds of reactance, ordinary and mutual capacitance and inductance.

EMI CONCERNS

EMI, source, path and receptor; threats, EMI issues, EMI regulations.

CONDUCTING A COMPLIANCE TEST WITH EMPHASIS ON THE PCB AND ENCLOSURE

Conducted emissions, radiated emissions, RF immunity, conducted RF immunity, ESD, lightening, electrical fast transient, shock and EMP.

EMI DESIGN REQUIREMENTS FOR PCBs

Interference coupling mechanism, CM radiation, antenna loops, basics of PCB radiation, PCB suppression techniques, design for immunity, switching mode power supplies (SMPS)

DESIGN CONSIDERATIONS FOR EMI COMPATIBILITY

Crosstalk – inductive/capacitive, forward/backward – how does it occur? Why does it cause radiation how is it minimized? Picket fences, Cu fills, spread spectrum clocking, bypass and radiation on PCBs, Near/Far field, differential/common coupling modes and resonance, analog circuitry.

POWER DISTRIBUTION AND GROUNDING

Power/ground planes why do they cause radiation and how is it minimized? Splits, slots, moats, floats, drawbridge, how to design for minimizing emissions from power/ground planes. How to design for digital/analog (multibias) and single bias PCBs. Ideal stackups to be EMC.

CABLES/CONNECTORS AND PCB, CONCERNS OF PCBs INTERFACING WITH FILTERING AND SHIELDING

Capacitive and magnetic shielding, slots in PCBs, shield grounding, cable radiation, shielding types, transfer impedance, shielding connection.

ENCLOSURES, MOTHERBOARDS, BACKPLANES AND BLADES

Loss of PCB ground plane in cables, how to design a PCB land trace to a connector pin to eliminate reflections, cables configuration, antenna loops with cable connections, high-speed connectors.

FILTERING AND SHIELDING

Shielding versus filtering, using ferrites, filtering mains supply, using transients suppressors on mains and I/O lines, radiation through shields.

BACKPLANE LAYOUT CONCERNS

Effects of source and load impedance and why mismatches cause radiation, the capacitive load: Zo and propagation delay and radiation effects, 90o, 45o bends, guard traces, interplane capacitance, via discontinuity and vias resonance concerns, backdrilling vias.

BUSSES AND DIFFERENTIALS

Multidrop systems, drivers, transceivers, and designing a high-speed bus, attributes/drawbacks of loosely/tightly couple differential pairs, differential impedance, advantages and disadvantages of edge (side by side), broadside (dual), asymmetric, and microstrip differentials; reflections and crosstalk in differentials, matching electrical lengths.

HIGH SPEED CLOCKING

Clock, skew and jitter, the effects of ISI, skin, and dielectric losses; the effect of various base materials of long-haul transmission, a real-world example of compensation techniques.

APERTURES, WAVE LENGTHS, ABSORPTION MATERIALS AND HEAT SINKING

The major concern today is the aperture openings versus the frequency of signals versus the higher density packaging, i.e. ICs are running hotter and the ever increasing signal edge rate. This leads to more radiation through the apertures, i.e. lamda is shorter, but more heat is generated because Power = C times F times V2. What’s new in enclosure absorption materials and what are their capabilities for minimizing radiation? What’s new in heat sink materials (backplanes, blades, servers) which in turn alleviate the need for heat conduction through the apertures? These current issues will also be covered in the course.

Whether you are looking for general information or have a specific question, we want to help
Request More Information

Time Frame: 0-3 Months4-12 Months

No Comments Yet.

Leave a comment