Fiber Optic Communication Systems Training

Fiber Optic Communication Systems Training

Introduction:

Fiber Optic Communication Systems Training Course Description

This three-day Fiber Optic Communication Systems Training investigates the basic aspects of digital and analog fiber-optic communication systems. Topics include sources and receivers, optical fibers and their propagation characteristics, and optical fiber systems. The principles of operation and properties of optoelectronic components, as well as signal guiding characteristics of glass fibers are discussed. System design issues include both analog and digital point-to-point optical links and fiber-optic networks.

Fiber Optic Communication Systems TrainingRelated Courses:

Duration:CHANGE

Skills Gained:

• What are the basic elements in analog and digital fiber optic communication systems including fiber-optic components and basic coding schemes?
• How fiber properties such as loss, dispersion and non-linearity impact system performance.
• How systems are compensated for loss, dispersion and non-linearity.
• How a fiber-optic amplifier works and it’s impact on system performance.
• How to maximize fiber bandwidth through wavelength division multiplexing.
• How is the fiber-optic link budget calculated?
• What are typical characteristics of real fiber-optic systems including CATV, gigabit Ethernet, POF data links, RF-antenna remoting systems, long-haul telecommunication links.
• How to perform cost analysis and system design? From this course you will obtain the knowledge needed to perform basic fiber-optic communication systems engineering calculations, identify system tradeoffs, and apply this knowledge to modern fiber optic systems. This will enable you to evaluate real systems, communicate effectively with colleagues, and understand the most recent literature in the field of fiber-optic communications.

Customize It:

With onsite Training, courses can be scheduled on a date that is convenient for you, and because they can be scheduled at your location, you don’t incur travel costs and students won’t be away from home. Onsite classes can also be tailored to meet your needs. You might shorten a 5-day class into a 3-day class, or combine portions of several related courses into a single course, or have the instructor vary the emphasis of topics depending on your staff’s and site’s requirements.

Course Content:

Part I: FUNDAMENTALS OF FIBER OPTIC COMPONENTS

Fiber Optic Communication Systems. Introduction to analog and digital fiber optic systems including terrestrial, undersea, CATV, gigabit Ethernet, RF antenna remoting, and plastic optical fiber data links.

Optics and Lightwave Fundamentals. Ray theory, numerical aperture, diffraction, electromagnetic waves, polarization, dispersion, Fresnel reflection, optical waveguides, birefringence, phase velocity, group velocity.

Optical Fibers. Step-index fibers, graded-index fibers, attenuation, optical modes, dispersion, non-linearity, fiber types, bending loss.

Optical Cables and Connectors. Types, construction, fusion splicing, connector types, insertion loss, return loss, connector care.

Optical Transmitters. Introduction to semiconductor physics, FP, VCSEL, DFB lasers, direct modulation, linearity, RIN noise, dynamic range, temperature dependence, bias control, drive circuitry, threshold current, slope efficiency, chirp.

Optical Modulators. Mach-Zehnder interferometer, Electro-optic modulator, electro-absorption modulator, linearity, bias control, insertion loss, polarization.

Optical Receivers. Quantum properties of light, PN, PIN, APD, design, thermal noise, shot noise, sensitivity characteristics, BER, front end electronics, bandwidth limitations, linearity, quantum efficiency.

Optical Amplifiers. EDFA, Raman, semiconductor, gain, noise, dynamics, power amplifier, pre-amplifier, line amplifier.

Passive Fiber Optic Components. Couplers, isolators, circulators, WDM filters, Add-Drop multiplexers, attenuators.

Component Specification Sheets. Interpreting optical component spec. sheets – what makes the best design component for a given application.

Part II: FIBER OPTIC SYSTEMS

Design of Fiber Optic Links. Systems design issues that are addressed include: loss-limited and dispersion limited systems, power budget, rise-time budget and sources of power penalty.

Network Properties. Introduction to fiber optic network properties, specifying and characterizing optical analog and digital networks.

Optical Impairments. Introduction to optical impairments for digital and analog links. Dispersion, loss, non-linearity, optical amplifier noise, laser clipping to SBS (also distortions), back reflection, return loss, CSO CTB, noise.

Compensation Techniques. As data rates of fiber optical systems go beyond a few Gbits/sec, dispersion management is essential for the design of long-haul systems. The following dispersion management schemes are discussed: pre-compensation, post-compensation, dispersion compensating fiber, optical filters and fiber Bragg gratings.

WDM Systems. The properties, components and issues involved with using a WDM system are discussed. Examples of modern WDM systems are provided.

Digital Fiber Optic Link Examples: Worked examples are provided for modern systems and the methodology for designing a fiber communication system is explained. Terrestrial systems, undersea systems, Gigabit ethernet, and plastic optical fiber links.

Analog Fiber Optic Link Examples: Worked examples are provided for modern systems and the methodology for designing a fiber communication system is explained. Cable television, RF antenna remoting, RF phased array systems.

Test and Measurement. Power, wavelength, spectral analysis, BERT jitter, OTDR, PMD, dispersion, SBS, Noise-Power-Ratio (NPR), intensity noise.

Whether you are looking for general information or have a specific question, we want to help

Request More Information

Time Frame: 0-3 Months4-12 Months

No Comments Yet.

Leave a comment