IP Networking Over Satellite Training Part I

IP Networking Over Satellite Training Part I

Introduction:

IP Networking Over Satellite Training Part I Course Description

This two-day IP Networking Over Satellite Training Part I is designed for satellite engineers and managers in military, government and industry who need to increase their understanding of how to reduce satellite networking costs in mission critical applications. IP has become the worldwide standard for converged data, video, voice communications in military and commercial applications. Satellites extend the reach of the Internet and mission-critical Intranets. Satellites deliver multicast content anywhere in the world. New generation, high throughput satellites (HTS) provide lower cost transport for IP. With these benefits come challenges. Satellite delay and bit errors can impact performance. Satellite links must be integrated with terrestrial networks. IP protocols create overheads. Encryption creates overheads. Space segment has been expensive (but HTS provides the potential for significant cost reduction). There are routing and security issues. This course explains techniques that can mitigate these challenges, including traffic engineering, quality of service, WAN optimization devices, TDMA DAMA to capture statistical multiplexing gains, improved satellite modulation and coding, what applications are most amenable to support from HTS. Quantitative techniques for understanding throughput and response time are presented. System diagrams describe the satellite/terrestrial interface. Case histories illustrate methods for optimizing the design of converged real-world networks to produce responsive networks while minimizing the use and cost of satellite resources.

IP Networking Over Satellite Training Part IRelated Courses:

Duration:2 days

Skills Gained:

• The impact of IP overheads and the off the shelf devices available to reduce this impact: WAN optimizers, header compression, voice and video compression, performance • enhancement proxies, voice multiplexers, caching, satellite-based IP multicasting.
• How to deploy Quality of Service (QoS) mechanisms and use traffic engineering to ensure maximum performance (fast response time, low packet loss, low packet delay and jitter) over communication links
• How to use satellites as essential elements in mission critical data networks, with emphasis on the use of new generation HTS.
• How to understand and overcome the impact of propagation delay and bit errors on throughput and response time in satellite-based IP networks.
• Impact of new coding and modulation techniques on bandwidth efficiency – more bits per second per hertz
• How adaptive coding and modulation (ACM) can improve bandwidth efficiency
• How to link satellite and terrestrial circuits to create hybrid IP networks
• How to use statistical multiplexing to reduce the cost and amount of satellite resources that support converged voice, video, data networks with strict performance requirements
• Link budget tradeoffs in the design of TDM/TDMA DAMA networks
• How to select the appropriate system architectures for Internet access, enterprise and content delivery networks
• The impact on cost and performance of new technology, such as LEOs, Ka band, on-board processing, inter-satellite links, traffic optimization devices, high throughput satellites.

Customize It:

With onsite Training, courses can be scheduled on a date that is convenient for you, and because they can be scheduled at your location, you don’t incur travel costs and students won’t be away from home. Onsite classes can also be tailored to meet your needs. You might shorten a 5-day class into a 3-day class, or combine portions of several related courses into a single course, or have the instructor vary the emphasis of topics depending on your staff’s and site’s requirements.

Course Content:

Introduction

Brief Overview of Data Networking and Internet Protocols. Seven Layer Model (ISO). The Internet Protocol (IP). Addressing, Routing, Multicasting. Impact of bit errors and propagation delay on TCP-based applications. User Datagram Protocol (UDP). Introduction to higher level services. NAT and tunneling. Use of encryptors such as HAIPE and IPSec.

Quality of Service Issues in the Internet. QoS factors for streams and files. Performance of voice over IP (VOIP). Video issues. Response time for web object retrievals using HTTP. Methods for improving QoS: MPLS, DiffServ. Use of WAN optimizers, header compression, caching to reduce impact of data redundancies and IP overheads. Performance enhancing proxies reduce impact of satellite delay. Network Management and Security issues including impact of encryption in IP networks.

Satellite Data Networking Architectures. GEO and LEO satellite overview. The link budget, modulation and coding techniques. Methods for improving satellite link efficiency (bits per second/Hz)–including adaptive coding and modulation (ACM) and overlapped carriers. Ground station architectures for data networking: Point to Point, Point to Multipoint using satellite hubs. Shared outbound carriers incorporating DVB. Return channels for shared outbound systems: TDMA, CDMA, Aloha, DVB/RCS. Full mesh networks. Military, commercial standards for DAMA systems. The difference between high throughput satellites and conventional satellites.

System Design Issues. Mission critical Intranet issues including asymmetric routing, reliable multicast, impact of user mobility: small antennas and pointing errors, low efficiency and data rates, traffic handoff, hub-assist mitigations. Comm. on the move vs. comm. on the halt. Military and commercial content delivery case histories.

Predicting Performance in Mission Critical Networks. Queuing models to help predict response time based on workload, performance requirements and channel rates. Single server, priority queues and multiple server queues.

Design Case Histories Integrating voice and data requirements in mission-critical networks using TDMA/DAMA. Start with offered-demand and determine how to wring out data redundancies. Create statistical multiplexing gains by use of TDMA DAMA. Optimize space segment requirements using link budget tradeoffs. Determine savings that can accrue from ACM. Investigate hub assist in mobile networks with small antennas. Determine which applications are best served by HTS.

A View of the Future. Impact of Ka-band and spot beam satellites. Benefits and issues associated with Onboard Processing. New concepts for LEO, MEO, GEOs. Descriptions of current and proposed commercial and military satellite systems including MUOS, GBS, the new generation of commercial high throughput satellites, which promise order of magnitude cost reduction for many applications. Howe these can be used in military and mission critical commercial applications. New generation of low-cost ground station technology.

Whether you are looking for general information or have a specific question, we want to help

Request More Information

Time Frame: 0-3 Months4-12 Months

No Comments Yet.

Leave a comment