Space Radiation & It’s Effects On Space Systems & Astronauts Training

Space Radiation & It's Effects On Space Systems & Astronauts Training

Introduction:

Space Radiation & It’s Effects On Space Systems & Astronauts Training Course Description

This Space Radiation & It’s Effects On Space Systems & Astronauts Training is designed for technical and management personnel who wish to gain an understanding of the fundamentals and the effects of space radiation on space systems and astronauts. The radiation environment imposes strict design requirements on many space systems and is the primary limitation to human exploration outside of the Earth’s magnetosphere. The course specifically addresses issues of relevance and concern for participants who expect to plan, design, build, integrate, test, launch, operate or manage spacecraft and spacecraft subsystems for robotic or crewed missions. The primary goal is to assist attendees in attainment of their professional potential by providing them with a basic understanding of the interaction of radiation with non- biological and biological materials, the radiation environment, and the tools available to simulate and evaluate the effects of radiation on materials, circuits, and humans.

Space Radiation & It's Effects On Space Systems & Astronauts TrainingRelated Courses:

Duration:2 days

Skills Gained:

• Sources of space radiation
• Space radiation environment and it spatial and time dependences
• Models of the radiation environment and comparisons
• Effects of the radiation environment on materials and electrical systems
• Effects of the radiation environment on humans and the risk to astronauts
• Tools available to simulate the effects of the space environment (TRIM/Geant4)
• Available radiation test facilities and test planning

Customize It:

With onsite Training, courses can be scheduled on a date that is convenient for you, and because they can be scheduled at your location, you don’t incur travel costs and students won’t be away from home. Onsite classes can also be tailored to meet your needs. You might shorten a 5-day class into a 3-day class, or combine portions of several related courses into a single course, or have the instructor vary the emphasis of topics depending on your staff’s and site’s requirements.

Course Content:

1. OVERVIEW.

Objectives (course overview),
Hardware Effects (introduction).
Biological Effects. (introduction).
Radiation Induced Failures (HST, Phobus-Grunt, Galileo, ).

2. ASTRODYNAMICS REVIEW.

Introduction (Kepler’s Laws).
Two-Body Central Force Motion (equations of motion, general solution, vis-viva equation).
Conic Sections (circular. elliptical, parabolic, hyperbolic orbits).
Orbital Elements (celestial terminology, celestial motion, ITRS, GCRS, classical elements).

3. SUN AND SOLAR WIND.

Overview (Sun’s position in galaxy).
Solar Characteristics (properties, sidereal and synodic rotation rates, Carrington cycles, Bartels
Solar Variability (sunspots, sunspot cycle, sunspot migration, sunspot number, solar flux number, solar
Solar Wind (description, constituents, NASA model, heliosphere, termination shock, bow wave,
Blackbody Radiation (definition, Planck’s law, solar spectrum, Stefan-Boltzmann law, Wien

4. MAGNETIC FIELDS.

Introduction (units, Lorentz force, Zeeman effect).
Interplanetary Magnetic Field (characteristics, field lines, measurements, near-earth field).
Planetary Magnetic Fields (intrinsic fields, remnant fields, dynamo theory, Earth dynamo, gas giants
Geomagnetic Field (pole variation, reversals, magnetic field models, WWM. IGRF, dipole models, BL
Geomagnetic Activity (indices: K, Kp, ap, A, Ap),
NOAA Space Center Prediction Center (data available)

5. MAGNETOSPHERE.

Introduction (planets with magnetospheres).
Ionopause (definition, solar wind and planets without magnetic fields, standoffs, Venus, Mars).
Magnetosphere (Earth’s magnetosphere, standoff, planetary standoffs, relative sizes).
Magnetic Rigidity (parameters, definition, analysis, example).
Cutoff Rigidity (Stormer equation, solution for vertical trajectories, Earth cutoff contours).

6. SINGLE PARTICLE MOTION.

Introduction (background, discovery of trapped radiation, overview trapped motion).
Equations of Motion (Lorentz force),
Gyration Motion (introduction, gyro-frequency, Larmor radius, Electrons, protons),
Guiding Center Motion (description, equations of motion, uniform field motion, drift velocities).
Mirror Points (equations of motion, mirroring in dipole field, equatorial loss cone, simulation results,

7. TRAPPED RADIATION.

Introduction (model requirements, planetary radiation, available models).
AE-8 and AP-8 Models (description, flux distribution, SAA, low altitude simulation, high altitude
CRRESELE and CRRESPRO Models (description, model results, low altitude simulations).
AE-9 and AP-9 Models (need, description, solar activity correlation, status, simulation).
Model Evaluations (intercomparisons, proton flux, electron flux, doses, shielding).
cycles, solar zones, solar atmosphere, energy source, life cycle, habitable zone).
cycle predictions, CMEs, solar flares, solar flare classification).
characteristics).
displacement law).
dynamos, relative strengths, characteristics of planets).
coordinates).
electron and proton motions).
simulation, typical exposures).

8. COSMIC RAYS.

Introduction (background, anomalous, galactic, composition, sources).
Characteristics (spectrum, gamma rays, detection, Voyager measurements, solar activity correlations),
Cosmic Ray Models (alternatives).
CREME86 Model (description, simulation).
CREME96 Model (description, simulation),
ISO Model (description, simulation).
Nymmik Model (description, simulation),
Model Evaluations (intercomparisons, observations).

9. SOLAR PARTICLE EVENTS.

Introduction (background).
Characteristics (propagation, time variation, latitude variation, observations, solar activity, GOES
Solar Particle Models (overview).
SOLPRO Mode.
CREME Models.
King Model.
JPL Model.
Rosenqvist Model.
ESP Model.
PSYCHIC Model.
Model Evaluations (intercomparisons).
Mars Surface Model.

10. RADIATION INTERACTIONS.

Radiation Effects (Selected spacecraft and space system failures)
Radiation Fundamentals (Ionizing and non-ionizing radiation, photon spectrum, radiation hazards).
Photon Interactions (photon interaction processes, scattering cross-section, linear and mass
Neutron Interactions (absorption and scattering, energy loss, number of collisions, Monte Carlo
Charge Particle Interactions (interaction processes, nuclear and electron interactions)
Radiation Energy Loss (stopping power, linear energy transfer, Bethe-Bloch equation, example
Effects on Electronics (types of radiation damage to circuits, long-term effects (total ionization dose, observations).
attenuation coefficients for elements and alloys, sample attenuation coefficients as function of energy).
simulations) stopping power, SRIM and TRIM simulation and sample results, introduction to GEANT4, Bragg peak, particle range in materials, shielding effectiveness, GEANT4 simulation and test results). displacement damage), single event effects (upsets, latchups, burnouts, gate ruptures), analog effects, radiation testing, radiation hardness ratings and guidelines, radiation damage coefficients, solar cell damage, and sample EQFLUX radiation damage simulations). simulations).
Radiation Mitigation (safe operating areas, effectiveness of EDAC, hardness assurance,), Radiation Damage Coefficients (description, effects on solar cells, IV curve, sample RDCs, Radiation Hardness Assurance and Qualification (activities, radiation tests, safety factors, parts quality, radiation documents).

11. RADIOBIOLOGY.

Introduction (ionizing and non-ionizing radiation, biological effects, DNA, deterministic effects,
NASA Human Research Program (description, standards of care, criticality metric, mission risks).
Countermeasure Readiness Levels (description).
Radiation Doses (absorbed, equivalent, effective, ICRP-103, comparison of standards).
Background Exposure (risk values, low level exposure, typical exposure, exposure effects, lifetime
Spaceflight Exposure (deterministic risks, stochastic risks, observations, effect of altitude, risk

12. RADIATION TEST FACILITIES.

Introduction (background).
stochastic effects).
risks, exposure at altitude).
management).
Particle Accelerators (facilities, types, cobalt-60 testing, electrostatic generators, Van der Graff
accelerators, induction machines, linear accelerators, cyclotron, betatron, synchrontron),
Brookhaven National Laboratory (overview, facilities).
NASA Space Radiation Laboratory (overview, facilities, available species, access, test protocols).

Request More Information

Time Frame: 0-3 Months4-12 Months

No Comments Yet.

Leave a comment